Commit 57fdebf9 by dong

fix20230223

parent 0b983216
......@@ -68,13 +68,14 @@ def attract_map():
provinces = [i[0] for i in provinces if i[0]] # 拿到省份的无重复值
for pro in provinces:
num = enterprise.filter_by(province=pro).count()
province_data = Enterprise.query.filter_by(province=pro).first()
# province_data = Enterprise.query.filter_by(province=pro).first()
df.append({"name": pro,
"value": num,
"color": jishu(num),
# "jwd": {"lng": province_data.p_lng, "lat": province_data.p_lat}})
})
# redis缓存
redis_store.setex(name_query, 30 * 24 * 3600, json.dumps(df))
return jsonify(code=RET.OK, msg="获取成功", data=df)
if province and not city: # 省-》市数据
cities = Enterprise.query.filter_by(province=province).with_entities(Enterprise.city).distinct().all()
......@@ -87,7 +88,8 @@ def attract_map():
"color": jishu(num),
# "jwd": {"lng": city_data.c_lng, "lat": city_data.c_lat}})
})
# redis缓存
redis_store.setex(name_query, 30 * 24 * 3600, json.dumps(df))
return jsonify(code=RET.OK, msg="获取成功", data=df)
if province and city and not district: # 市-》区数据
districts = Enterprise.query.filter_by(province=province, city=city).with_entities(
......@@ -101,7 +103,8 @@ def attract_map():
"color": jishu(num),
# "jwd": {"lng": district_data.d_lng, "lat": district_data.d_lat}})
})
# redis缓存
redis_store.setex(name_query, 30 * 24 * 3600, json.dumps(df))
return jsonify(code=RET.OK, msg="获取成功", data=df)
if province and city and district: # 区数据
num = enterprise.filter_by(province=province, city=city, district=district).count()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment